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A theory of electromagnetically driven shock waves 

By J. K. WRIGHT AND M. C. BLACK 
Atomic Weapons Research Establishment, Foulness, Essex 

(Received 5 December 1958) 

During the last few years, many experimental devices have been built in which 
strong shock waves are generated in gases by electromagnetic forces on current- 
carrying gas particles. The general theory of these devices is discussed, taking 
external circuit inductance into account. It is shown that a shock wave of con- 
stant speed is finally attained. This shock wave is travelling at  90 % of its final 
speed when the circuit inductance has increased to 3.0 times its initial value. 

1. Introduction 
In  recent years some attention has been directed towards producing strong 

shock waves in a gas by means of a technique known as electromagnetic driving. 
The apparatus used may take a variety of forms but the basic principles are very 
similar. Figure 1 (a) shows a simple arrangement as used, for example, by Kolb 
(1957). A low inductance condenser bank is discharged between two electrodes 
in a gas. The return path is close to the discharge and the electromagnetic inter- 
action between them drives the current-carrying gas particles away from the 
return lead with such a force that an intense shock wave is produced. 

The electromagnetic forces can be considered in various equivalent ways. One 
method is to treat the current in the gas as being in the magnetic field due to the 
current in the return path, but a more convenient approach from our point of 
view is to look upon the magnetic field H as exerting a pressure H2/8n normal to 
the field and a tension H2/8n in the direction of the field on the current-carrying 
gas particles. (Here and throughout this paper the electromagnetic system of 
units is employed.) In our case the motion is normal to the direction of the field 
and the hydrodynamics of the gas can therefore be analysed by assuming that the 
current sheet is forced forwards by a piston exerting a pressure H2/8n, and in fact 
the magnetic field is often said to act as a ‘magnetic piston’. Another possible 
apparatus for generating strong shocks is depictedin figure 1 (b) .  Here the currents 
in the gas are confined to a cylindrical sheet which is driven inwards under the 
action of the circumferential magnetic field. At low ambient gas pressures, a 
stream of high energy particles is driven towards the axis and this is the basis of 
the various high-speed pinch devices that have been reported by Artsimovich et al. 
(1956), Anderson et al. (1957), Bodin & Reynolds (1957), and Hagerman & 
Mather (1958). At higher gas pressures, collisions occur between the accelerated 
particles and the relatively stationary particles ahead of them and an imploding 
shock wave is produced. 
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It is also possible to produce a cylindrically imploding shock by the electrode- 
less discharge arrangement shown in figure 1 (c). When the switch is closed, a 
current starts to flow in the circuit round the discharge tube. The consequent 
electric field induced in the gas is greatest at  the walls and a current flows in the 
opposite direction to the primary current. In  this case the current paths are 

Ln Switch 

a 

Condenser sheer 
bank 

I I  

Negative electrode 
b 

FIGURE 1. Various experimental arrangements for the production of strong shock waves 
using electromagnetic driving. In each of the arrangements the magnetic field produced by 
the discharge acts on the current-carrying gas particles which are driven under the action 
of the Lorentz force. 
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circumferential and the gas particles are driven inwards by the longitudinal 
magnetic field. This is the basis of the device reported by Elmore, Little & Quinn 
(1958). 

Although the three practical arrangements differ from each other in their 
geometrical patterns, when the discharge is first formed the effect of the cylindrical 
convergence in the cases shown in figures 1 ( b )  and 1 (c) is negligible, and we may 
obtain results applicable to all three devices by analysis of the simple arrangement 
shown in figure 2. This consists of two parallel plane electrodes of breadth a a 
distance b apart. When the switch is closed the gas breaks down and currents flow 
along the path of minimum inductance, i.e. close to the return path. This situation 
has been analysed by Allen (1957), who assumed that (a )  the conductivity of the 
circuit is infinite, ( b )  the thickness of the shock wave is small compared with the 
dimensions of the discharge chamber, and (c) the current rises instantaneously 
from zero to a finite value and then remains constant. 

\ 
\ \  Direction Of m$gn 

Shock front 

FIGURE 2. A simple one-dimensional model of the electromagnetically 
driven shock wave apparatus. 

In  practice there will be a finite time before the steady-state condition (c) is 
attained since the external circuit will have a finite inductance Lo, even initially 
when the current in the gas chooses the path for which this inductance is a 
minimum. It is the purpose of this investigation to determine the time taken for 
the current to build up to its steady value and the effect of the formation time on 
the structure of the generated shock wave. 

In  $2 we discuss the equations of motion of the conducting gas and the relevant 
boundary conditions, putting them in a non-dimensional form convenient for 
analysis, In  $ 3  we consider the phenomena occurring at a very early stage in the 
discharge. Here the circuit inductance has risen from Lo to Lo + L and we assume 
L to be negligible compared with Lo. This gives a very convenient similarity 
solution, which is improved upon in $ 4 by including L in the equations and using 
Taylor series expansions. The expansions are applicable, however, only so long 
as 7,  a non-dimensional time, is small. We use this solution as a starting-point for 
the solution of the whole flow, obtained by the method of characteristics, and this 
is described in 3 5. The results are discussed in 0 6. 
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2. Basic theory 
In  our system we have three regions. First of all there is the gas ahead of the 

shock front which is in its ambient non-ionized condition. There is no magnetic 
field in this region. Then there is the region of shocked gas where again there is no 
magnetic field. The boundary conditions between the first and second regions are 
the normal Rankine-Hugoniot relations for a gas in the absence of a magnetic 
field. Finally there is the third region where there is no gas but a magnetic field H .  
There is a current sheet in the gas at the boundary between regions two and three 
and the boundary conditions equate magnetic pressure in region three with 
hydrodynamic pressure in region two. 

Using Lagrangian co-ordinates, we formulate the equations of motion and 
boundary conditions of the conducting gas. Let s be the Lagrangian co-ordinate 
of a particle, and x be the position of that particle at time t. We denote by u, p 
andp the particle speed, pressure, and density at the point (s ,  t ) .  The gas is initially 
at rest with density po. 

Equations of motion of the gas 
The equations of conservation of mass and momentum are 

ax 
P a s  = P o ,  

au ap 
p a t =  --- ax 

Using (3.1) and - = ?!! ax we rewrite (2 .2)  as 
ax ap as I as 

Once the element of gas with co-ordinate s has been shocked, all fkther  changes 
at this element are isentropic. This gives a third equation of motion 

where for a fully ionized gas, y = p. 

Boundary conditions at the shock 
At the shock front we have the boundary conditions 

x = s, 

and 
as 
- = u, 
at 

where U is the velocity of the shock. 
We assume that the magnetic pressure is at all times much greater than the 

ambient pressure so that the Rankine-Hugoniot relations for a singly ionized 
gas take the simple ‘strong shock’ form, 

P =  PO, (2-7) 

u = $27, (2.8) 

p = +pou2. (2.9) 
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In  these equations, allowance has been made for the partial pressure of the 
electrons which are supposed to be in thermal equilibrium with the ions, and the 
ionization and dissociation energies are supposed negligible compared with the 
thermal energy of the gas. 

Boundary conditions at the current sheet 

At the current sheet we may equate the magnetic pressure H2/8n- outside the gas 
with the hydrodynamic pressure inside, giving 

H is related to the current i in the discharge, and we may write 

2ni2 
a2 p = - .  (2.10) 

When the low impedance current source a t  a constant potential V, is connected 
to the circuit of negligible resistance and constant inductance Lo, the discharge 
voltage is given by 

(2.11) 

(2.12) 

d i  
O d t '  

d v = -(Li). 
at 

V='V,-L 

We also have 

Equating (2.11) with (2.12), we have 

di d 
Oat at 

L -+-(Li) = v,, 
which integrates to (Lo+L)i = G t .  (2.13) 

The inductance of the discharge circuit in the gas, L, is directly proportional 
to the distance x that the current sheet has travelled, and if the inductance L 
becomes equal to Lo at a distance x = xo we may write L/Lo = x/xo and hence 
equation (2.13) may be written 

Lo 1 + -  i = &t. ( 3 
Eliminating i from (2.10) and (2.14), we obtain 

(2.14) 

(2.15) 

Equation (2.15) gives the boundary condition to be satisfied at the piston, whose 
Lagrangian co-ordinate is 

s = 0. (2.16) 

Since the current takes some time to build up in the discharge, the initial 
magnetic pressure is very small, but as a consequence of our assumption that the 
shock pressure is much greater than the ambient pressure, a particle close to the 
current sheet that has just been shocked will have p = 4p0 by equation (2.7). 
Since the pressure increases as the discharge current builds up, this gas particle is 
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compressed isentropically and its density increases. In  the limit, at the current 

(2.17) 
path, we may write 

We now reduce the equations of motion to a non-dimensional form by the 

s = o ,  p = m .  

following substitutions : 

where 

Equations (2.1), (2.3) and (2.4) become 

(2.18) 

(2.19) 

D - = 1  a t  
aa 

a -(PD-Y) = 0. 
a7 

The boundary conditions at the shock, (2.5) to (2.9), become 

(2.20) 

(2.21) 

(2.22) 

(2.23) 

D = 4, v = gw, P = 4v2.J 

The boundary conditions at the piston, (2.15) to (2.17), become 

P(l +lJ2 = 7', a = 0, D = 03. (2.24) 

3. Similarity solution at early times 

changing the first of the boundary conditions (2.24) at the piston to 
In  the initial stages we may neglect L compared with Lo. This has the effect of 

P = 72. (3.1) 

Let = 72p1(7), (3.2) 

!5 = 72c-1(r), (3.3) 

D = DI(11) (3-4) 

We now obtain our equations in terms of a new variable 11 = a/P. 

Equations (3.20) to (2.22) become 
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If the position of the shock is 7 = P, i.e. u = ~ ~ / 3 ,  then the speed of the shock is 
w = du1d.r = 27P, and v = jw = +TP. Thus the boundary conditions at  the shock 

(3.8) 
become 

The boundary conditions a t  the piston become 

P, = 1, 7 = 0, D, = CO. (3.9) 

t1 = 7 = P, D, = 4, Pl = 3P2. 

We may integrate (3.7) and use the boundary conditions at the shock, giving 

P, = 3 4 y .  (3.10) 

Equations ( 3 4 ,  (3.6) and (3.10) can be integrated numerically, giving 

/3 = 0.449 and [6,],=,, = -0.388. 

4. Taylor series extension 

enabling us to correct for the boundary condition P (  1 + lJ2 = r2. 
The solution in $ 3  is now extended using a Taylor series expansion, thus 

Put = T~[,( 1  AT^), (4.1) 
P = +P1( 1 + B T ~ ) ,  (4.2) 
D = Dl( 1 + C T ~ ) ,  (4.3) 

where A ,  B, and C are functions of 7. Terms involving higher orders of 7 are 
negligible for values of 7 < 0.35. 

Equations (2.20) and (2.21) become 

where R = Atl, X = BP,, and equation (2.22) integrates to 

PD-Y = f(a) (4.6) 

In  our similarity solution we showed that when L is negligible (4.6) becomes 

3P f(a) = -u. 
47 (4.7) 

We therefore apply a Taylor series expansion and write (4.6) in the extended 

3P 
case as 

PD-7 = p ( l + q a ) ,  

where q is a constant and terms of O(a3) are neglected. Substituting for P and D 
from (4.2) and (4.3), we obtain 

The new shock position is then 
s = P,(?-IC+q7). 14.9) 

a, = p72( 1 + E72). (4.10) 
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At the shock we have 
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t s =  r2E (") < (1 +Ar2), 
7 

(4.11) 

p, = .2P@) (1 +Br2), 

0, = D($) (1 + c q .  

(4.12) 

(4.13) 

Equations (4.1 1) to (4.13) are expandedusing (4.10), and our boundary conditions 
at the shock (2.23) become 

A =$E, B = ? E ,  C = SE. (4.14) 

The boundary conditions at  the piston (2.24) become 

s = -2[t-,1,=,, = -3t,1,=0. (4.15) 

Equations (4.4), (4.5) and (4.9), which are now no longer functions of 7 alone, 
can be integrated numerically for a particular value of r, giving 

= 0.35, E = -0.144, a, = 0.054, q = -0.981. 

5. Solution by characteristics 
The solution is now completed using the method of characteristics. From 

(2.20) and (2.21) we obtain the following relations which are used in finite 
difference form : 

The Taylor series expanded similarity solution may now be used as a starting- 
point for the numerical integration along the characteristics given by (5.1) and 
(5.2). This integration was carried out on the A.W.R.E. I.B.M. 704 computor 
until a shock wave of constant speed was attained. 

6. Discussion of results 
The position of the shock front and current sheet as a function of time are 

depicted in figure 3. The curves which are initially parabolic (similarity solution) 
tend asymptotically to straight lines when the steady state has been attained. 
Values of the non-dimensional hydrodynamic parameters at the shock front and 
current sheet are tabulated in table 1. The shock speed w has been calculated as 
a function of the final steady velocity attained wf and the result is plotted in 
figure 4. It will be seen that the shock has achieved 90 yo of its final speed after it 
has travelled a non-dimensional distance 2.5 in a non-dimensional time 3-1. At 
this time the current sheet has travelled a distance 2.0 units and the total 
inductance of the system has therefore risen from Lo to 3.0L0. We may therefore 
conclude that the constant current approximation of Allen becomes valid when 



A theory of electromagnetically driven shock waves 297 

12 

7 6  

0 

k 7 

I 1 
5 10 

5 
FIGURE 3. Distance-time plot showing the motion of shock front and current sheet. 5 is 

a non-dimensional distance and 7 is a non-dimensional time. 

Piston 
r 

7 

0.05 
0.10 
0.15 
0.20 
0.25 
0.30 
0.35 
0.40 
0.45 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 
1.2 
1.4 
1.6 
1.8 
2.0 
2.5 
3.0 
4.0 
5.0 

10.0 

1 

5 P v VlVo %lax 

0.00097 0.00250 0.0384 0.003 0.046 
0.00387 0.00992 0.0767 0.012 0.093 
0-00869 0.0221 0.114 0-025 0.138 
0.0154 0.0388 0.152 0.045 0.183 
0.0240 0.0596 0.188 0.068 0.227 
0.0343 0.0841 0.225 0.096 0.270 
0.047 0.112 0.260 0.128 0.311 
0.060 0.142 0.295 0.162 0,351 
0-076 0.175 0.329 0.199 0.389 
0.093 0.209 0.359 0.235 0.426 
0.13 0.28 0.42 0.312 0.494 
0.18 0.36 0.47 0.389 0.552 
0.23 0.43 0.52 0.462 0.605 
0-28 0.49 0.56 0.527 0.654 
0.34 0.56 0.60 0.588 0.696 
0.47 0.67 0.66 0.686 0.762 
0.60 0.77 0.72 0.769 0.817 
0.75 0.84 0.76 0.826 0.853 
0.91 0.89 0.79 0.866 0.878 
1.1 0.93 0.81 0.891 0.897 
1.5 1.02 0.85 0.940 0.940 
1.9 1.06 0.88 0.969 0.958 
2.8 1.10 0.90 0.986 0.976 
3.7 1.12 0.92 0.995 0.984 
8.3 1.15 0.93 1.000 0.998 

TABLE 1 

Shock 
A r \ 

t P V w WIWf 

0.00112 0.00151 0.0337 0.0449 0.036 
0.00448 0.00601 0.0671 0.0895 0.072 
0.0101 0-0134 0.0995 0.133 0-107 
0.0179 0.0236 0.132 0.176 0.142 
0.0279 0.0364 0.165 0.220 0.177 
0.0400 0.0515 0.197 0.263 0.212 
0.054 0.069 0.227 0.303 0.244 
0.070 0.088 0.257 0.343 0.276 
0.088 0.110 0.287 0.383 0.309 
0.108 0.132 0.315 0.420 0.338 
0.15 0.18 0.37 0.49 0.395 
0.21 0.23 0.42 0.56 0.451 
0.27 0.28 0.46 0.62 0.500 
0.33 0.33 0.50 0.67 0.540 
0.40 0.39 0.54 0.72 0.580 
0.55 0.48 0.60 0.80 0.645 
0.72 0.56 0.65 0.87 0.701 
0.90 0.64 0.69 0.92 0.741 
1.09 0.71 0.73 0.97 0.782 
1.3 0.75 0.75 1.00 0.806 
1.8 0.85 0.80 1.07 0.862 
2.4 0.92 0.83 1.11 0.895 
3.5 1.01 0.87 1.16 0.935 
4.7 1.06 0.89 1.18 0.951 

10.7 1.11 0.91 1.22 0.983 
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the inductance of the system has increased to the order of three times its initial 
value. 

When the steady state has been attained, the distance-time relationships for 
the piston and shock tend to the lines 

and 

6 = 0 . 9 3 ~ -  1.0, 

E = 1.247- 1.3, 

corresponding to non-dimensional speeds of 0.93 and 1-34 respectively. Returning 
to our original physical units, we get final piston and shock speeds given by 

7 

FIGURE 4. Shock speed as a function of time. w/w, is the shock speed expressed as a ratio 
of that finally attained, and r is a non-dimensional time. 

The variation of voltage V across the discharge and current i as a function of 
time can be determined from the boundary conditions at the piston, equa- 
tions (2.13) and (2.11). We obtain 

The values of VjV, and i/imsx are presented in table 1 and plotted as a function of 
time in figures 5 and 6. 

We now consider the variations of pressure, density, temperature and particle 
speed in the gas with distance a t  various values of time. Typical results are 
presented in figure 7. It will be seen that the density rises rapidly towards the 
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piston. This is because a particle of gas that is initially close to the origin is com- 
pressed to 4 times its initial density by a relatively weak shock. As the current 
rises in the discharge, the pressure increases and this particle is compressed to 
a high density. At early stages of the discharge (T = 0.1, 0.35) the current is 
rising rapidly and the variation in density extends as far as the shock front, 
whereas at late stages (T = 10.0) there is a layer of almost constant density behind 
the shock front before the thin highly compressed layer at the current sheet. 

f l  

. 

r-- i - .  . ~ 

7 '. 4 

FIGURE 5 
7 

1.00 

075 

a 050  
' -  > 

025 

0, 

I 1 
I 

2 4 

FIGURE 6 
7 

FIGURE 5. Voltage across the discharge as a function of time. V / V ,  is the discharge voltage 
compared with the source voltage, and T is a non-dimensional time. 

FIGURE 6. Discharge current as a function of time. i is the discharge current at  non- 
dimensional time, r ,  and i,,, is the current when the shock has attained a constant speed. 

At early stages in the discharge the pressure at the shock front is only 60 yo of 
that a t  the current sheet. This is because the mass of shocked gas is being 
accelerated rapidly and there is therefore a large pressure gradient in the gas. 
As the steady state is gradually attained, the acceleration of the shocked gas 
falls off and the pressure gradient disappears. Thus, at time r = 10, the pressure at 
the shock is 96 yo of that at the current sheet. 

The variation in temperature in the gas can be easily interpreted since it is 
proportional to pressure divided by density. At early stages there is a fall in 
temperature all the way back from the shock front, whereas at  late stages we have 
a region of fairly uniform temperature close to the shock front and a cold slab of 
gas close to the current sheet. It should be mentioned at this point that all the 
preceding analysis has assumed that the rate of energy transfer between points 
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FIGURE 7. Hydrodynamic parameters in the shocked plasma as a function of non-dimen- 
sional distance 6 for various values of the non-dimensional time T.  
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in the gas by means of thermal conduction is negligible. In  practice the thermal 
conductivity may be very high and, in applying the results of this paper to specific 
practical cases, it  is necessary to satisfy oneself that this basic assumption is 
valid. 

It will be noticed that at all times the particle speed v is remarkably uniform 
across the gas. This is because at early stages, when the current is rising rapidly, 
the time taken for sound waves to traverse the gas is very small and local com- 
pressions with associated variations in particle speed do not have time to develop. 

Finally we return to our initial assumption of a fully ionized and dissociated 
gas with the ionization and dissociation energies negligible compared with the 
thermal energy of the gas. In  order to completely ionize and dissociate hydrogen, 
deuterium or tritium, it is necessary to put in 15 eV of energy per atom present. 
The above assumption is therefore only valid when the thermal energy of the gas 
is large compared with this energy, i.e. the temperature of the gas must be much 
greater than 1.7 x lo5 OK. Since the similarity solution ( 3  3) gives a shock strength 
(and therefore temperature) increasing as the square of time, there is a finite time 
before this condition is attained. 
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